GUJARAT TECHNOLOGICAL UNIVERSITY

MECHANICAL ENGINEERING (19) FINITE ELEMENTS METHOD SUBJECT CODE: 2181911 B.E. 8TH SEMESTER

Type of course: Undergraduate

Prerequisite: Zeal to learn the Subject

Rationale: Methods for formulations of mathematical models of analysis of mechanical systems are introduced. The class of problems include 1D and 2D structural, thermal and fluid problems; trusses and beams structural problems.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical M		Marks	Marks	
				ESE	PA (M)		PA(V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

Content:

Sr.	Content	Total Hrs	% Weightage
<u>1</u> 10.	Fundamentals of Continuum Mechanics:	піз	
	Equilibrium of continuum-Differential formulation, Energy Approach- Integral formulation. Overview of approximate methods for the solution of the mathematical models: Rayleigh-Ritz methods, Methods of Weighted Residuals (Galerkin, Least-squares & Collocation methods).	6	15%
2	Numerical Integration: Central Difference Method, Newmark's Methods, Wilson's method, Gauss	4	5%
	quadrature.		
3	Line Elements and Applications: Concepts of Modelling and discretization, Shape functions, elements and Degrees-of-Freedom, Strain – displacement relation, Local and Global equations; Iso-Sub-Super parametric formulation.	4	5%
	Structural Problems : Linear and Quadratic elements, Elimination and Penalty Approach, Properties of global stiffness matrix; Structural and Thermal strains; Treatment for various boundary conditions. Formulation of Truss element, Plane truss: Stiffness and Force matrix. Beam: Euler – Bernoulli Element formulation, plane frames, various loading and boundary conditions.	10	25%
	Thermal and Fluid Problems: Steady state heat transfer: Element formulations, treatment to boundary conditions with application to 1-D heat conduction, heat transfer through thin fins; Potential flow problems.	5	15%
4	2D Elements: Triangular (CST, LST): Shape function, Jacobian matrix, strain- displacement matrix, stress-strain relationship matrix, force vector. Quadrilateral Elements (Q4, Q8): Shape function, Jacobian matrix, strain- displacement matrix, stress-strain relationship matrix, force vector.	8	20%

Axisymmetric problems and applications.		
Dynamic Problems:		
Formulation of dynamic problems, consistent and lumped mass matrices for		
1-D and 2-D element, Solution of eigenvalue 1-D problems: Transformation	7	15%
methods, Jacobi method, Vector Iteration methods, subspace iteration		
method.		
	Axisymmetric problems and applications. Dynamic Problems: Formulation of dynamic problems, consistent and lumped mass matrices for 1-D and 2-D element, Solution of eigenvalue 1-D problems: Transformation methods, Jacobi method, Vector Iteration methods, subspace iteration method.	Axisymmetric problems and applications.Dynamic Problems:Formulation of dynamic problems, consistent and lumped mass matrices for 1-D and 2-D element, Solution of eigenvalue 1-D problems: Transformation methods, Jacobi method, Vector Iteration methods, subspace iteration method.7

Suggested Specification table with Marks (Theory):

-									
	Distribution of Theory Marks								
	R Level	U Level	A Level	N Level	E Level	C Level			
	10	15	15	10	10	10			

Legends: R: Remembrance ; U = Understanding; A = Application and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1. Introduction to Finite Elements in Engineering, Chandrupatla T. R. and Belegunda A. D., PHI.
- 2. A First Course in the Finite Element Method, D Logan, Thompson Learning
- 3. An Introduction to Finite Element Method, J N Reddy, McGraw Hill.
- 4. Concepts and Applications of Finite Element Analysis, R D Cook, Wiley India.

Course Outcome:

After learning the course the students should be able to:

- 1. Understand the concept of finite element method for solving Mechanical Engineering problems.
- 2. Apply the knowledge of FEM for 1D stress analysis, heat transfer analysis and flow analysis.
- 3. Formulate and solve problems of trusses, beams, planar loading and axisymmetric.
- 4. Formulate and solve preliminary problems for dynamic analysis.

List of Experiments:

- 1. Introduction to Finite Element Analysis software.
- 2. Solve 1D Structural, thermal and fluid problems using FEA software and manually.
- 3. Solve Plane truss problems, using FEA software and manually. Include problems with symmetry.
- 4. Solve Beam problems with different boundary and loading conditions using FEA software and manually.
- 5. Solve planar problems.
- 6. Solve axisymmetric problems.
- 7. Solve Dynamic problems.

Design based Problems (DP)/Open Ended Problem:

- 1. Write a generic program for solving 1D and 2D structural problems.
- 2. Analyse effect of node numbering, element types and meshing on solutions.

Major Equipment:

1. Computational facility and FEA solver.

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.